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An algorithm is presented that quantitatively accounts for donor–donor energy migration (DDEM)
among fluorophore-labeled proteins forming regular aggregates. The DDEM algorithm is based on
Monte Carlo and Brownian dynamics simulations and applies to calculation of fluorescence depo-
larisation data, such as the fluorescence anisotropy. Thereby local orientations, as well as reorienting
motions of the fluorescent group are considered in the absence and presence of DDEM and among,
in principle, infinitely many proteins as they form regular aggregates. Here we apply the algorithm
for calculating and illustrating the DDEM and the time-resolved fluorescence anisotropy under static
as well as dynamic conditions within helical, linear and circular aggregate structures. A principal
approach of the DDEM algorithm for analysing protein aggregates is also outlined.

KEY WORDS: Protein aggregates; protein polymers; fluorescence anisotropy; donor–donor energy migration;
homo transfer; amyloid diseases; Monte Carlo simulation; Brownian dynamics.

INTRODUCTION

Proteins may form oligomeres but also very large
aggregates, which constitute a regular structure. For in-
stance, transthyretin forms tetramers and mutants of
transthyretin can form large aggregates, which are associ-
ated with the human amyloid disease, familial amyloidic
polyneuropathy [1,2]. The formation of protein complexes
is also connected with conformational diseases, such as
the Alzheimer’s and the Creutzfeldt-Jakob’s diseases [3].
The actin-aggregation in muscle fibrils exemplifies an-
other interesting system for which a structural model has
been proposed [4,5] but which is not generally accepted.
Cytolytic toxins associated with diseases in humans and
animals [6,7] constitute other aggregating proteins which
are thought to create pores in membranes [8]. Tubulin is
yet another well-known protein that forms the building
unit of microtubules (see e.g., [9]).

1 Department of Chemistry; Biophysical Chemistry, University of
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The molecular understanding of bioprocesses is in-
timately related to physico-chemical methods for obtain-
ing structural and dynamic information about proteins
and nucleic acids, etc. The traditional structural meth-
ods are based on X-ray diffraction and multidimensional
NMR-spectroscopy. Electronic energy transfer between
donor and acceptor groups [10,11] has also been used for
years, as well as more recently energy transfer between
identical fluorophores, so-called donor–donor energy mi-
gration (DDEM) [12]. All methods, however, show ad-
vantages and disadvantages. While X-ray-diffraction re-
lies on the preparation of crystals of high quality, NMR
may, for larger molecules, suffer in spectral resolu-
tion. On the other hand, detailed distance information
can be obtained (Å-resolution) provided these problems
are overcome. The distances obtained from studies of
electronic energy transfer and DDEM experiments are
much longer typically between 10 and 100 Å, and the
methodological problems concern the specific labelling
[12] and the quantitative molecular interpretation of data.
The latter question, however, could be overcome by
using a recent development of an extended Förster
theory [13,14].
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To characterise monomer/dimer transitions in solu-
tion, researchers have utilised the influence of DDEM on
the fluorescence depolarisation [15–18]. Using the addi-
tivity of the fluorescence anisotropy, calculation of the
fraction of each state becomes possible, provided one
knows what kind of aggregates are formed. In many
cases, however, the fluorescence depolarisation data con-
tain additional structural information. Several scientists
have also used energy transfer/migration for examining
peptides and proteins in lipid bilayers and have been able
to show nonuniform distributions [19–21].

This paper aims at showing how Monte Carlo (MC)
simulations can be used to quantitatively describe the
DDEM between fluorescent groups, which are specifically
linked to stochastically distributed protein monomers in
a regular aggregate. The presented algorithm accounts
for local orientational restriction and motions of the fluo-
rophore in the protein, as well as the geometrical param-
eters of different regular structures.

COMPUTER METHODS AND FACILITIES

Simulations of energy migration between fluorescent
donors in proteins aggregate structures were performed to
obtain the time-dependent fluorescence anisotropy r(t).
The so called “κ2 problem” [14,22,23] is then an im-
portant question to account for accurately. The square
of the angular part of the dipole-dipole coupling, 〈κ2〉,
is a function of the mutual orientation of the interacting
dipole moments, as is obvious from Eq. (4) (vide infra).
In cases when the rate of energy migration is much slower
or faster than the fluorophore reorientation, the static or
dynamic isotropic averages of 〈κ2〉 are often used. In the
present study no such approximations are assumed. In-
stead, the dynamic processes are allowed to occur on the
same timescale. It is then necessary to use simulation
methods that account for the reorienting motions of the
fluorescent group, which moreover are restricted due to
the binding to proteins. These conditions are achieved by
Brownian Dynamics (BD) simulations, as described else-
where [14]. In the simulations, a unit vector representing
the molecular electronic transition dipole moment (�µ) un-
dergoes diffusion on a restricted part of a spherical surface,
defined by a first rank Maier-Saupe potential.

The initial coordinates of the unit vector are gen-
erated by using the rejection method [24]. The numeri-
cal scheme uses a 3D-diffusion process, restricted to the
two-dimensional surface of the sphere. Cartesian coordi-
nates are used and the potential is transformed into co-
ordinates that introduce a deterministic force in the BD-
simulation. The main steps of the simulation algorithm are

as follows:

1. Perform the labeling by choosing which of the
adjacent protein monomers has a fluorophore at-
tached, and then sample the initial coordinates of
the dipole vectors �µi .

2. For each dipole within a cut-off distance, meaning
a certain number of protein neighbors (N, where
N is usually nine proteins on each side), one per-
forms a BD simulation of trajectory. Here the po-
tential amplitude was γ1 = 14 (vide infra Eq. (1)),
which corresponds to a local order parameter of
0.80 and a rotational correlation time of 0.86 (in
units of reduced time).

3. To determine r(t) a MC simulation of energy
migration is performed. This is further described
in the section: Theoretical Prerequisites. The
timescale was divided into 1024 channels with a
channel width of �t = 0.00862, that gives max-
imum simulation time, T∞ = 8.83 (in units of
reduced time).

4. The steps 1–3 are repeated several times (usually
100,000) in order to calculate the average 〈r(t)〉.

Because the resulting anisotropy is an average over a
large ensemble of independent simulations, it is possible
to perform parallel computer calculations. For this the
MPI library was used. All the calculations were made
on a cluster of 6 Linux computers, each with an AMD
Sempron processor, under LAM. This cluster needs a few
minutes to calculate one anisotropy decay, corresponding
to about 1000 simulations. However the computational
time depends on the fraction of labelling, as well as the
strength of coupling.

THEORETICAL PRE-REQUISITES

Regular Protein Structures

In the modeling of regular protein aggregates we
have concentrated on the helical structure, which has been
proposed, for instance, for F-actin [4] and polymers of
α1-antitrypsin [25,26]. This prototype structure is also
interesting because it covers the special cases of linear and
ring-shaped structures. The characteristic parameters of a
helix (cf. Fig. 1) are composed of translational distance
(Tz), the rotation (θ ) of each neighbour protein, and the
radial distance between the helical axis and the position
of the fluorescent donor (Txy). For the proposed structure
of F-actin, the position of a the next monomer is obtained
from the coordinates of the preceding one by an axial
translation and a rotation of Tz = 27.5 Å and θ = 166◦,
respectively [5]. The distance between the helical axis and
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Fig. 1. Schematic showing the coordinate systems used to describe
the protein position in regular structures forming helical, linear and
ring-shaped aggregates. The ZA axis coincides with the C∞-axis of the
aggregate and Txy denotes the distance from this axis to the position
of a fluorescent group. The translational and rotational transformations
between nearest protein neighbours are θ and Tz, respectively. The flu-
orophore undergoes local reorienting motions about an effective sym-
metry axis ZD that is transformed to the aggregate fixed frame by �DA

= (αDA,βDA). The electric transition dipole �µ is transformed to the
D-frame by the angles �DA = (αDA, βDA).

the Cys-374 is of particular interest since this position can
be labelled by a fluorescence group. The distance from
the C∞ axis to the centre of mass of the fluorescent group
would then correspond to the Txy in Fig. 1. Previously
Moens et al. have reported Txy = 13.7 Å [5].

In present work, one donor (D) group is covalently
bonded to a protein molecule at a well-defined position
in the structure. The local orientation of the D is as-
sumed to be effectively uniaxial with respect to the ZD

(cf. Fig. 1) and the donor may also undergo interaction un-
der conditions of reorienting motions ranging from static
to dynamic. The latter means that energy migration be-
tween the D-groups is treated for negligible local motions
as well as for motions that occur on the time scale of
interaction, respectively. A Maier-Saupe potential given
by

U (βMD) = γ1P1(cos βMD) (1)

is used to describe restricted orientation and motion
about the ZD axis. Here P1(cos βMD) is the first Leg-
endre polynomial. Brownian dynamic (BD) simula-
tions are applied to account for the local reorienting
motions.

Because the protein aggregates are rather large, their
tumbling motions are negligible on the timescale of most
fluorescent molecules.

Energy Migration in Many-Donor Systems

Due to the extraordinary complexity in accounting
for interactions among many donors, an analytical theo-
retical description does not exist for these systems. Addi-
tional difficulties are caused by the anisotropic orientation
of the fluorophores and their internal motions. Here these
questions are circumvented by using MC simulations. The
MC simulation of energy migration involves all donor
molecules within some cut-off distance, which is usually
± 9 protein molecules counted from the protein (number
0) that carries an excited donor. The total migration rate
is calculated from

�(t) =
n∑

j=−n

ω0j (t) (2)

In Eq. (2) ω0j (t) stands for the rate of energy migration
from the 0:th to the j:th donor. This rate is given by the
well-known Förster equation:

ω0j (t) = 3κ2
0j (t)

2τ

(
R0

R0j

)6

(3)

in which τ , R0, R0j , and κ2
0j denote the donor fluores-

cence lifetime, the Förster radius, the distance between
the 0th to the jth donor, and the square of the angular part
of the dipole–dipole coupling, respectively. The explicit
expression for the latter reads:

κ2
0j (t) = (µ̂0(t) · µ̂j (t) − 3{µ̂0(t) · R̂0j }{µ̂j (t) · R̂0j })2

(4)

In Eq. (4) µ̂k and R̂0j are unit vectors of the electronic
transition dipoles and a distance vector between the centra
of mass of the 0th and jth donor, respectively.

The coordinates of µ̂j with respect to the ag-
gregate fixed frame are given by µ̂j (t) = �Aµj

(t) −
�O(Txy, Tz, θ, j ), where �Aµj

(t) and �O(Txy, Tz, θ, j ) de-
note the vector pointing from the origin of XA, YA, ZA to
the point described by µ̂j and the position of the centre
of mass of the jth donor, respectively (cf. Fig. 1).

The first question to solve in the MC simulation is
when an energy migration event takes place, denoted τEM.
We chose a time interval �t that is smaller than the char-
acteristic time for the variation of �(t) caused by reori-
enting motions. It means that �(t) is approximated to be
a constant within the time interval �t. Then we generate
a random number from a uniform distributionη ∈ (0, 1],
and calculate the time τEM according to

τEM = − 1

�(t)
ln η (5)
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The obtained value will only be accepted provided η <

�t , which would ensure that �(t) can be considered con-
stant. If η > �t one may step forward a time unit �t and
calculate �(t + �t). Using this �-value a new random
number is generated. This procedure is repeated until one
finds a value of η < �t .

The second decision concerns where the energy mi-
grates, i.e. to which D group among the labelled proteins.
From the above calculations one knows the time (T) of the
energy migration event. By using BD simulations we can
therefore account for the reorienting motions of all donors
within the cut-off distance �Aµj

(T ). This enables the calcu-
lation of κ2

0j (T ), ω0j (T) as well as �(T ). The simulation of
the orientational trajectories is for all particles performed
in time window T ∈ [0, T∞] within the cut-off distance,
and it is only repeated when moving along the aggregate.
To select the coming excited donor we normalize energy
migration rates and sort it in decreasing order according
to

|ω0j (T )| = ω0j (T )

�(T )
(6)

We then generate a random number from a uniform dis-
tribution η ∈ (0, 1], and select the ith donor for which

η ∈

j=i−1∑

j=1

ω0j (T ),
j=i∑
j=1

ω0j (T )


 (7)

The calculations above (Eqs. (2)–(5)) account for local
anisotropic motions of the donors groups, i.e. energy mi-
gration under dynamic conditions. For energy migration
in the static limit the scheme also holds, but the time-
dependence of ω0j and � is, of course no longer relevant.

The time-dependent fluorescence anisotropy (r(t))
is calculated for times [T − τ, T ) following the above
scheme until one reaches the time T ≥ T∞. Moreover the
procedure is repeated many times before the forming the
following final ensemble average (= 〈· · ·〉):

r(t) = r0

∑
j

〈pj (t)P2(µ̂0(0)µ̂j (t))〉 (8)

In Eq. (8) the subfix j runs over all proteins, e.g.
from −200 to +200 depending on the aggregate examined
with the probability pj (t) = 1 if the jth donor is excited
and 0 otherwise. P2(µ̂0(0)µ̂j (t)) is the second Legendre
polynomial.

RESULTS AND DISCUSSION

This section is outlined as follows. After presenting
different test cases of the algorithm, we describe and ex-

emplify its versatility, and show how it can be applied to
the analyses of true experimental data. In the final sec-
tion we discuss the principle use of the DDEM algorithm
for extracting structural information by comparing exper-
imental depolarisation data with the simulated.

Tests of the DDEM Algorithm

Different cases were selected for testing the DDEM
algorithm. To start with, we have considered DDEM
within oligomers, i.e. dimers, trimers, tetramers and
N-mers, for which all proteins are identically labelled with
respect to position and orientation. The time-dependent
fluorescence anisotropy will then reach a plateau value
{r(t∞)} which in the static limit is

r(t∞) = r0

∑N−1
j=0 P2(µ̂0 · µ̂j )

N
(9)

The limiting anisotropy values, calculated and sim-
ulated, are summarised in Table I. Different spatial
configurations of dimers, trimers, tetramers and pen-
tamers are studied. There is a good agreement with de-
viations typically less than the errors of experimental
determinations.

For a dimer the time-dependent fluorescence
anisotropy in the static limit is given by the following
analytical expression [28]:

r(t) = ((r0 − r∞) exp(−2ωt) + r∞)f + r0(1 − f ) (10)

where f is the labelling probability. The results obtained
when comparing DDEM simulations and Eq. (10) for dif-
ferent labelling probabilities show an excellent agreement.
The small deviations depend on the statistical noise which

Table I. The Calculated {rcalc(t∞) Using Eq. (9)} and DDEM-
Simulated {r(t∞)} Limiting Fluorescence Anisotropy Values

for DDEM Within Different D-labeled Oligomers (dimer-
Pentamers) in the Static Case

Spatial configuration r(t∞) rcalc(t∞)

XO 0.3637 0.3637
OXO 0.3582 0.3582
XOO 0.3279 0.3281
XOOO 0.2784 0.2784
OXOO 0.3308 0.3329
XOOOO 0.2208 0.2215

Note. For describing various spatial configurations, X denotes
that the donor is initially excited, and label O means a la-
beled neighbour. In the calculations of the limiting anisotropy
the following data were used for helical aggregates:ω =
0.6093, (µ̂0 · µ̂1) = −0.9709, (µ̂0 · µ̂2) = 0.8855, (µ̂0 · µ̂3) =
−0.7486, (µ̂0 · µ̂4) = 0.5682.
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is considerably reduced by averaging over 100,000 instead
of 10,000 simulations (See Fig. 2.)

For high rates of DDEM over large distances in
a helical structure, the orientational distribution of ex-
cited donors becomes cylindrically symmetric about the
C∞-axis with time. Provided that the local rotational cor-
relation times are short, the time-dependent fluorescence
anisotropy reaches a residual plateau value:

r(t∞) = r0[3 cos2 βDA cos 2αDA − 3 sin2 βDA + 1]

×〈D(2)
00 (βMD)〉2

4
(11)

here 〈D(2)
00 (βMD)〉 describes the local order of the donor

transition dipole with the respect to the ZD-axis of the
local frame (cf. Fig. 1). The other angles are defined in
Fig. 1. The r(t∞)-values obtained by using the DDEM
algorithm and Eq. (11) for various configurations (see
Table II) show convincing agreement.

Fig. 2. The time-dependent anisotropy decay {r(t)} obtained with the
DDEM algorithm for the case of two neighbouring proteins that are
labelled with the probabilities (= f) 0, 10, 50, 90, and 100% (solid line).
For a comparison, the analytical solutions calculated (cf. Eq. (10)) for
the corresponding f-values are also plotted (dotted line). The ensemble
average includes more than 10,000 simulations, except for f = 100%
where more than 100,000 simulations were performed. The insert com-
pares the r(t)-values obtained with the analytical theory (·····) and the
DDEM algorithm averaged over 10,000 (—–) and 100,000 (—) simu-
lations. The �r(t) ranges between 0.3634 and 0.3640. All data refer to
DDEM in the static limit.

Table II. The Calculated {rcalc(t∞) Using Eq. (11)} and DDEM-
Simulated {r(t∞)} Limiting Fluorescence Anisotropy Values are

Displayed for Different Configurations (αMD, βMD)

αMD (◦) βMD (◦) r(t∞) rcalc(t∞)

0 90 0.0613 0.0609
0 120 0.0038 0.0038

30 120 0.0114 0.0117
30 135 0.0012 0.0009
45 135 0.0037 0.0038
45 150 0.0018 0.0009
10 170 0.2004 0.2073
25 175 0.1254 0.1265
90 180 0.0608 0.0616

Note. The donor groups undergo Brownian motion in a Maier-Saupe
potential with the parameter γ1 = 14. In the absence of DDEM
r(t∞) = 0.2450 ± 0.0025.

The Aggregate Symmetry and r(t)

Three principal aggregate symmetries are considered
namely; the helical, linear, and circular one. To illus-
trate the influence of aggregate symmetry on the time-
resolved fluorescence depolarisation, data were generated
for the same configuration (αDA, βDA) and local order
(〈D(2)

00 (βMD)〉) of the donor group, as well as for different
labelling efficiencies. The influence of dynamics was also
examined. The data suggest (see Fig. 3) that the energy
migration in the static limit is faster in linear and circu-
lar aggregates as compared to the helical geometry. More
evident is the large difference between the r(t)-decays in
the static limit, at low degrees of labeling (f), and in the
presence of reorienting motion of the donor groups. With
increasing f-values, however, this difference decreases so
that the r(t)-decays become very similar for f-values ap-
proaching 100%. The simulations with the DDEM algo-
rithm also provide information about how far the initially
excited energy migrates within the aggregate. In units of
average number of Förster radii we find that the migration
in the linear aggregate is much faster and takes place over
a larger distance as compared to the helical aggregate.
This is compatible with the difference in dimensionality
and a similar behaviour has also been observed [28]. Be-
cause the energy displacement in a ring is directly related
to its radius a comparison is less straightforward between
the circular geometry on one hand, and the helical and
linear geometries, on the other.

The DDEM Algorithm and the Analyses
of Depolarisation Data

The number of parameters needed to describe the
aggregate structure (Txy , Tz, θ ), the static (αDA, βDA,
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Fig. 3. The time-dependent anisotropy decay {r(t)} and the normalised

mean square displacement of the excitation {
〈
R2(t)

〉1/2
/R0}. The unit

on the x-axis is reduced time, i.e. t/τ where τ is the fluorescence life-
time. The data refers to the following aggregate geometries: helical
(A, D), linear (B, E) and circular (C, F). The dashed lines correspond to
DDEM in the static limit (for local uniaxial anisotropic D-distribution),
while the remaining r(t)-decays (solid lines) account for Brownian mo-
tions within the corresponding uniaxial Maier-Saupe potentials. The
rotational correlation time is 0.86 in units of reduced time. In graphs
A, B and C the residual anisotropy {r(t∞)} decreases, while the mean
square displacement (D, E, F) increases with increasing fraction of la-
belling. The labelling fractions (f) start by a very low value (f ≈ 10−4)
and are increased to 5, 50, 95, and 100%. The local order parameter
〈D(2)

00 (βMD)〉 = 0.80.

〈D(2)
00 (βMD)〉) and dynamic (rotational correlation time)

properties of the donor group are typically seven. The
configuration parameters αDA, βDA have a large influence
on the anisotropy, which for the static case, as well as in
the presence of reorientation is illustrated in Fig. 4. In or-
der to entirely determine the parameter space, one needs
to increase the information content of the data analysed
by conducting a number of linearly independent exper-
iments. This can be possible by varying the fraction (f)
of donor-labelled proteins in the aggregate, since the r(t)-
decays evidently depend strongly on f, as illustrated in
Fig. 3. For sufficiently low f-values energy migration be-
tween the D-groups becomes negligible, which implies
that the time-resolved fluorescence anisotropy reveals in-
formation about order and dynamics of non-interacting
donors. This information is used to determine properties
of a particular local orienting potential [14]. As a conse-
quence, knowledge about the local order parameter and
the rotational correlation time reduces the number of un-
known parameters to five. It is reasonable to assume that
the potential is also relevant in the presence of DDEM.
In the remaining analyses the unknown parameters could
then be determined by analysing all of the linearly inde-
pendent experiments in a global manner. The overall flow
scheme for using the DDEM algorithm in the analyses of
depolarisation data is presented in Fig. 5.

Fig. 4. The time-resolved fluorescence anisotropy {r(t)} of donors lo-
calised in helical forming protein aggregates is displayed as a function
of the configuration angle βDA. The upper and lower anisotropy sur-
faces are obtained under static conditions and in the presence of local
reorienting motions, respectively. The labeling fraction is 43%, the ro-
tational correlation time is 0.86 in units of reduced time, the local order
parameter 〈D(2)

00 (βMD)〉 = 0.80, and αDA = 0◦.

CONCLUDING REMARKS

A DDEM algorithm has been developed, presented,
tested and illustrated. It accounts for DDEM within
regular aggregate structures, which may in practice be
regarded as infinite. Furthermore it accounts for the local
anisotropic order and reorienting motions of the D-groups
in a protein. In this study we used information in the choice
of parameters that are relevant for the local order and dy-
namics, as well as the fluorescence lifetime. These data
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Fig. 5. A flow scheme describing the simulation-deconvolution DDEM
algorithm. First one analyses experimental data that are obtained from
measurements on aggregates with a low fraction of labelling, i.e. f → 0.
Using guessed parameters on the orienting potential {U (βMD)} and the
diffusion constant {D} that mimic experimental data are simulated and
compared with the true experimental data, in a repetitive manner un-
til convergence and the best statistical fit is achieved. This procedure
involves the simulation of rf 0(t), the calculation of the sum and differ-
ence curves {s(t), d(t)}, the convolution with an experimental response
function, and the statistical analyses (χ2, etc.) of the data. This leads
to determining U (βMD) and D, which are pre-requisites for the next
step in the analysis. The experimental data depend on DDEM and are
obtained for different fractions of labelling, and then pass into another
fitting routine. In this procedure the parameters describing the geometry
and configuration of the different systems are varied in order to find a
global minimum. As in Step 1, this involves the simulation of rf 0(t), the
calculation of the sum and difference curves {s(t), d(t)}, the convolution
with an experimental response function, and the statistical analyses (χ2,
etc.). As a result of convergence one obtains the geometry configuration
of the system under investigation.

were taken from ongoing experimental studies on protein
structure. The application of the DDEM algorithm for
analysing synthetic and real data (cf. Fig. 5.) is currently
being tested.

ACKNOWLEDGMENTS

This work was financially supported by the Swedish
Research Council. We are grateful to Profs. Oleg
Seleznjev and Peter Olsson for advices concerning the
Monte Carlo algorithm, as well as to Drs Stanislav Kalinin
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14. P. P. Håkansson, M. M. Isaksson, P.-O. Westlund, and L. L. -Å.
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